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Abstract

This paper introduces a Fortran program called KINDEF for 3D deformation detection via
geodetic methods, and describes theory and procedure of it. KINDEF is a kinematic
deformation analysis program that uses Kalman-filter technique and performs 3D statistical
analysis to inspect the significance of geodetic network point displacements, velocities and
acceleration of displacements coming from three repeated GPS surveys of the same network.
KINDEF uses Kinematic Single Point Model that is one of the kinematic models. Information
about theory and an application of it were given in the article

1. Introduction

Nowadays, deformation surveys have been became one of the most important application areas
of geodesy. In deformation monitoring studies, static deformation models are usually used.
Static models are sufficient in studies where time is neglected. However, most of the current
engineering applications require monitoring of movement behaviors. In such studies, kinematic
deformation models determining displacements, velocities and acceleration as dependent on
time are preferred.

This paper introduces a Fortran program called KINDEF for 3D deformation detection via
geodetic methods, and describes procedures of it. KINDEF is a kinematic deformation analysis
program and performs 3D statistical analysis to inspect the significance of geodetic network
point displacements, velocities and acceleration of displacements coming from three repeated
surveys of the same network. For deformation detection, KINDEF uses Kinematical Single
Point Model solved by Kalman-Filter. In this program, movement parameters (displacements,
velocities, acceleration) are statistically tested and moved points, velocities and accelerations of
moving points are determined. The program was written by Microsoft Fortran Visual
Workbench v.1.0 editor being a windows-based and using maximum memory. It has only one-
screen facility for representing the results of deformation detection, numerical representation.
KINDEF has been used successfully to analyze repeated GPS surveys belonging to a geodetic
network in Trabzon province (TURKEY) established for landslide monitoring and control. Test
results of the KINDEF were given.

2. Mathematical Theory

Kinematic models allow to estimate the velocity and even the acceleration (by building double
differences) of control point movements. Because this is done for every single point, these type
of models is called ‘single point’ deformation models. Here the one with the so called
‘Hannover approximation’ is applied. The unknown parameters of a single point deformation
model are the velocity and the acceleration of control points. Therefore, a time-dependent
function is required to estimate these parameters. The most common approach for this type of
model is a quadratic polynomial function
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xk+1  =  xk  +  a  (tk+1 - tk)  +  
2
1  b (tk+1 - tk)

2 (1)

Where, xk+1 is the coordinate vector at time tk+1, xk the coordinate vector at time tk,a the velocity
vector at time tk, and b the acceleration vector at time tk. Eq.(1) can be used to compute both
coordinates and parameters of motion, if a sufficient number of observations is available. The
Hannover approximation considered here applies three steps to compute the unknown
parameters (Zippelt 1986) whereby a minimum of five different observation periods are
required. The first step is identical to the static model described before (Leonhard and Niemeier
1986).

Step 1: Static model

xk+1  =  xk . (2a)

Among the results are the priori variance of unit weight s0 and the estimated variance of unit
weight m0. Both are used to calculate the global test statistic TS which is compared with the α-
percentage point qS of the F-distribution with rang r and f degrees of freedom

TS = 2
0

2
0

m

s
> qS   (2b)

The outcome is used to estimate the velocity vector in step 2.

Step 2: Linear model

xk+1  =  xk  +  a  (tk+1 - tk) . (3a)

Among the results are the priori variance of unit weight s0 and the estimated variance of unit
weight mL. Both are used to calculate the global test statistic TL which is compared with the α-
percentage point qL of the F-distribution with rang r and f degrees of freedom

TL = 
2
g

2
0

m

s
 qL (3b)

The outcome is used to estimate the acceleration vector in step 3.

Step 3: Quadratic model

xk+1  =  xk  +  a  (tk+1 - tk)  +  
2
1  b (tk+1 - tk)

2. (4a)

Among the results are the priori variance of unit weight s0 and the estimated variance of unit
weight mQ. Both are used to calculate the global test statistic TQ which is compared with the α-
percentage point qQ of the F-distribution with rang r and f degrees of freedom

TQ = 2

2
0s
> qQ (4b)

If there are less than five different observation periods available, the method described before is
not applicable. In such cases, a Kalman filtering approach may help as introduced hereafter
(Pelzer 1986). A Kalman filter method can be used for regular and irregular point movements.
For Eq.(1) a Kalman filter function for the state vector is given by (Pelzer 1987)
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where Rk+1,k is the trend or prediction matrix, Sk+1,k the noise matrix, y 1+

k

 the state vector at

time tk+1 containing trend and noise, and 

k

y  the regular state vector at time tk, and kξ the

random noise vector at time tk. The variance-covariance matrix of Eq.(6) reads

1k,yy
C

+  =  k1,kR +
 

kyy ,C   T
k1,kR +  + 

k1,kS +

 
kξξ,C

 T
k1,kS +

(6)

Where, C is the variance-covariance matrix of 
ky , and C kξξ, is the variance-covariance

matrix of kξ . Eqs.(5-6) can be combined with the linear Gauss-Markov model as follows
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1k,yy1k,yy CC
++ = T

1k1k1k KDK +++ ,
(7b)

where Lk+1 represents the observation vector at time tk+1 and Kk+1 the consolidation matrix

1
1k

T
y1k,yy1k DAQK −

+++ = .
 (8)

Using the equations above, the innovation vector dk+1 and its variance-covariance matrix at time
tk+1 are given

1ky1k1k yALd +++ −=

T

1k,y1k,yy1k,y1kll,1k AQAQD
+++++ +=

(9)

so that the regular state vector at time tk+1 can be computed by

=+1ky 1k1k1k dKy +++ +  (10)
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Finally, the innovation vector dk+1 can be tested by the hypothesis

H0  :  E[dk+1] =  0 (11a)

against

H1  : E[dk+1]  ≠  0 (11b)

with the test statistic T
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for its statistical significance. If H0 is true, the computed results are acceptable (Yalçιnkaya
1994, 2003).



2. Program Description

Program was designed and written for 3D-GPS network. The starting point of this evaluation is
a free-net adjustment for each measuring period resulting in adjusted coordinates, their
estimated variance of unit weight, and their estimated variance-covariance matrix. By using the
single point static model, the other kinematic models (linear and quadric) are calculated step-by-
step as suggested by the Hannover approach using Kalman-filter technique. To decide about the
expansion of the model with velocity and acceleration respectively, statistical tests are
performed in the program using Equations 2b, 3b and 4b.

Table 1 shows statistical test results of kinematic single point model process. The most proper
functional model for the kinematic single point model is shown in Table 1 in decision column.
Here, a priori variance (s0) is computed preliminary adjustment. A posteriori variance (m0) is
computed from the model and a posteriori variance of expanded model (mg) is computed from
the parameters of the expanded model. The test values (T and Tg) are computed with a priori
and a posteriori values and compared with the F-distribution table value (q) (confidence level is
α=0.05) and it is decided whether the expansion of the model with velocity and acceleration
parameters respectively are significant or not. Please see (Koch 1999; Mierlo 1978) for more
information about statistical test theory and application.

Table 1. Statistical test results of kinematic single point model

Linear Model
(Position + Velocity)

Quadric Model
(Position + Velocity+

Acceleration)
Global
Test

Expanded
Model Test

Global
Test

Expanded
Model Test

Period

s0

m0

T
qf

s0

mg

Tg

qg

Period

s0

m0

T
qf

s0

mg

Tg

qg

DECISION

(The Most Suitable
Model)

Nov. 2000
Feb. 2001

0.741
0.765
1.066
1.516

0.765
17.222
560.750

1.669

Nov. 2000
Feb. 2001
May. 2001

0.765
0.839
1.204
1.484

0.839
4.637

30.528
1.613

POSITION
+ VELOCITY +

ACCELERATION

Table 2 shows results computed from three periodic GPS measurements made on November
2000, February 2001 and May 2001. Movement parameters (position (dx, dy, dz), velocity (vx, vy,
vz), acceleration (ax, ay, az)) of this model were computed and results were given in Table 2. Here,
every parameter is divided by their square mean error and thus test values (T) are computed.
The test values are compared with the t-distribution table value (q) and it is decided whether
movement parameters are significant or not using Equation 11c. If parameters have significantly
changed, a  (+) sign is given in Table 2, otherwise a (-) sign is assigned.

In this paper, in order to do comparison and bring up superiority of kinematic approach, the
same problem was solved by a static model (θ2-criterion). Results were listed for the model in
Table 3. Please see (Öztürk, 1978; Yalçιnkaya and Tanιr 2000) for more information about
theory and application of it.



Table 2. Kinematic single point model deformation results

Kinematic Single Point Model
Position + Velocity + Acceleration

If T > qt  then  (+)  “Stable”    If  T < qt  then  (-)  “Moved”        qt : t-test value T : test
values

Models Linear Model Quadric Model
Periods November 2000 – February 2001 November 2000 – February 2001 – May

2001
qt = 1.989 qt = 1.979

Points 1 2 4 8 9 1 2 4 8 9
dx (cm) -6.10 -0.03 1.20 -0.03 -0.80 -16.09 0.07 1.80 0.09 -3.94

Tdx 45.19 0.26 9.03 0.27 5.06 36.64 0.33 7.62 0.37 15.75
Decision (+) (-) (+) (-) (+) (+) (-) (+) (-) (+)
dy (cm) 5.84 -0.02 0.42 -0.26 0.16 18.47 -0.02 -0.27 -0.52 1.32

Tdy 45.87 0.18 3.35 1.86 1.04 26.71 0.08 2.14 1.02 5.12
Decision (+) (-) (+) (-) (-) (+) (-) (+) (-) (+)
dz (cm) -2.94 -0.12 1.16 -0.12 -0.23 -6.40 -0.53 1.54 -0.21 -1.82

Tdz 20.49 1.13 8.32 0.82 1.34 16.64 1.39 6.47 0.84 6.98
Decision (+) (-) (+) (-) (-) (+) (-) (+) (-) (+)

vx (cm/ay) -2.03 -0.01 0.40 -0.01 -0.27 -1.32 0.02 -0.21 0.02 -0.79
Tvx 36.43 0.15 7.30 0.07 4.11 12.49 0.35 2.07 0.37 6.32

Decision (+) (-) (+) (-) (+) (+) (-) (+) (-) (+)
vy (cm/ay) 1.94 -0.01 0.14 -0.04 -0.06 2.26 0.00 -0.39 -0.04 0.55

Tvy 33.91 0.11 2.60 0.83 0.91 12.33 0.01 3.96 0.73 4.39
Decision (+) (-) (+) (-) (-) (+) (-) (+) (-) (+)

vz (cm/ay) -0.98 -0.02 0.39 -0.02 -0.76 -0.17 -0.07 -0.27 -0.02 -0.46
Tvz 16.78 0.67 6.88 0.40 1.09 2.50 1.45 2.50 0.26 3.39

Decision (+) (-) (+) (-) (-) (+) (-) (+) (-) (+)
ax (cm/ay2) 0.12 0.002 -0.104 0.001 -0.089

Tax 4.62 0.21 4.12 0.12 2.88
Decision (+) (-) (+) (-) (+)

ay (cm/ay2) 0.05 0.000 -0.09 -0.001 0.101
Tay 2.07 0.06 3.72 0.13 3.29

Decision (+) (-) (+) (-) (+)
az (cm/ay2) 0.14 -0.003 -0.110 -0.001 -0.064

Taz 5.06 0.39 4.18 0.05 2.92

Decision (+) (-) (+) (-) (+)

Table 3. Static (θ2-criterion) deformation results

Static Model (θ2-Criterion)
Periods November 2000 – February 2001 November 2000 – May 2001
Points 1 2 4 8 9 1 2 4 8 9
dx (cm) -5.61 1.27 -0.54 -13.82 2.26 -3.12
dy (cm) 5.34 0.35 -0.03 16.23 -0.54 1.03
dz (cm) -2.60 1.22 0.05 -4.84 1.82 -1.36
Decision Moved

S
table

Moved

S
table

Moved Moved

S
table

Moved

S
table

Moved

3. Discussion

A comparison of the static model using θ2-criterion and the correspondent value in the Kalman-
filter method for kinematic single point model are listed in Tables 2 and 3. These tables show
that the result for both model are generally close together and reveal similar characteristic for
point movements.  When examining results of Table 2 and 3, it can be seen that directions of
movement parameters computed with both model are the same. As a result, it can be said that
both model results are harmonious. As different from the static model, kinematic single point
model provided computation of velocities and accelerations of displacements.



Acceleration parameter have physical meanings. The sign of acceleration is of significant
importance to be able to interpret deformations. If acceleration is greater than 0, velocity of
deformation increases. If acceleration is less than 0, velocity of deformation decreases. Physical
environmental conditions usually determine the sign of acceleration. This evaluation enables a
deformation analysis to be made more realistically with respect to physical realities.

As a result, the kinematic single point model solved by Kalman-filter is a statistically sound
technique and capable of detecting very small movements. Combining GPS technology with the
kinematic approach provides surveyor with a powerful tool for movement detection. Once it is
implemented, it is very easy to apply in deformation monitoring.

4. Conclusion

KINDEF is a kinematic deformation analysis program and performs 3-D statistical analysis to
inspect the significance of geodetic network point displacements, velocities and acceleration of
displacements coming from three repeated surveys of the same network. Program provides
estimating movement velocities and accelerations in addition to displacements using Kinematic
Single Point model and Kalman-Filter method.

Technical Information

Fortran code of the KINDEF was not given in the paper due to limitation of number of pages. A
Fortran Visual Workbench v.1.0 version of the program code will be provided on request from
Mualla Yalçιnkaya (mualla@ktu.edu.tr) or Temel Bayrak (tbayrak@ktu.edu.tr). They can also
provide more detailed theoretical explanations about the program and give an example about
use of it.
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