FIG WORKING WEEK 2017/

BIM FOR SURVEYORS Helsinki Finland Sunday 28 May 2017

Mlchael J Olsen
“Associate Professor:
Oregon State UnlverS|t

Con}rlbutup
Hamid M&H;sn’ |

) co ' Oregon State
IﬂlHlV EHM ﬂ - mﬁm Image data: Ezra Che Umver31ty




~F FIG WORKING WEEK 2017
Al g BIM FOR SURVEYORS Helsinki Finland Sunday 28 May 2017
| About me

» Co-Chair, IAG_Subcommission4.2 : .—m--;_;:_,%, 2 —
Geospatial apping and Engmeerrng S ——

e —— =

» Technical Imple mentatlon Drrector =
NSF NHERL Rag |d Center ;-';“_-«I_--_;’-;;_j.—,--:

S e e

= ‘A_.__._i,,-\

PhD. University of Callfornla San Dlegoi
Research: lidar to model seacliff erosion fv

MS and BS, U iversity of Utah I|quefactf§n hazard mappmf

Primary Rf earch Interests Geomatlcs lldar 3D modeling, GIS, GNSS, scientific
V|suaI|zat|on computatlonalprogrammlng, coastal geomorphology, earthquakes, landslides,

and other geo- -hazards. - Y ‘,

FIGIIVA,

~

ANvate ”Il@ = =
[




# FIG WORKING WEEK 2017

L BIM FOR SURVEYORS  Helsinki Finland Sunday 28 May 2017

Source: NCHRP OregonState
Synthesis 446 Y University



— ol
{ .
; F vt
& 1y T
534 i !
& | 1‘| A
, 2.5, s
X s . DU

= v

7 FIG WORKING WEEK 2017

BIM FOR SURVEYORS

Helsinki Finland Sunday 28 May 2017

T TR NT

Outline

Data acquisition
Error Sources
Data processing
Segmentation Approaches
— Manual
— Semi-Automatic
— Automatic
Modeling Considerations
Research Highlights
Additional Resources

118 I8 i (DB) EEY Neo

dope Oregon State
5 Universi
' ty



“€-< » FIG WORKING WEEK 2017

BIM FOR SURVEYORS Helsinki Finland Sunday 28 May 2017

Photo Scan Vector Solid Objects
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Level of LIDAR Expertise
Expert
= - =« = Maoderate experience
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*Quality Management Plan € Fails QC
*Determine locations of interest .

e e Cdrelionsh eences | / Data Acquisition \ / Geo referencing \

*Weather\ Environment conditions )
*Determine which sensors are needec! *Input §nwronmental *Extract targets from scan data
*GNSS PDOP prediction | corrections _ *Process control network
*Topography\land cover\water e acoulle *Combine TLS, GNSS, and total
- *Scan and target location plan / validation points station
NS LY e T —" *Scan Data — Transformation
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=l Packaging and Delivery \ Computations\Analysis «Classify data
1 +Develop reports : *Detect change\deformation *Surface (model) data
! +Zip Data - *Cut\Fill estimation *Extract Features\line work
! *Evaluate strategy efficiency <:| *QC analysis results *QC models and features
I for future missions | * Data Attribution
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Survey accuracy (especially local) directly affects model accuracy

High quality acquisition of field data is critical for reliable results and
efficient extraction/modeling

Understand and determine Level of Accuracy \Detail Requirements
before planning survey

Maintain balance of complete coverage versus “modelling” the object
later from partial data

You will never capture 100%. 80% is easy to do, but it is hard to fill in
small shadows. Ultimately, you will need to interpolate. Avoid shadows
on important objects or complex objects.
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Overall factors influencing accuracy

* Ability to determine range

* Ability to determine angles (H&V)

« Spot size on target (i.e. distance from target)
«  Geometric arrangement (angle of incidence)
« Material type and reflectivity

* Platform stability

«  Geo-referencing methodology (e.g. IMU, GPS, etc.) ooint cloud more
« DTM or CAD modeling technique accurate?

« Data transfer errors (e.g. digit truncation!!)

 Parallax between photograph and lidar data — use intensity

Is the model or the
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a) Multlpath pomts from river

Saturation
off wall of

4 0.043m

c) Blooming of reflective target d) Saturation of reflective target

~ Figure from Olsen, M.J. (Accepted).
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Figure from Olsen, M.J. (Accepted). Chapter 8, Terrestrial
laser scanning, Surveying Engineering Manual, ASCE.
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70°

< 20
« Data quality degrades with obliqueness to the surface
« Position
* Intensity

« Resolution
Figure from Olsen, M.J. (Accepted). Chapter 8, Terrestrial
laser scanning, Surveying Engineering Manual, ASCE.

A Oregon State
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Cleaning/Filtering/Classifying

« Polygons

* Range, intensity, XYZ filters

 Plane filters (above, below)

« Full waveform

Ground filtering

«  Minimum Separation

« Random

« Select and “Delete”

« Some software masks data rather than deletes

i& 1 MM &2 (DB) Y Neo 85%%?‘31?5“6
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Segmentation Approaches

« Manual
— Tedious & Frustrating

«  Semi-Automatic
— Isolate an object of interest
— Fit object to cluster of points

« Automatic

— Often require a lot of fine tuning of
parameters (e.g. tiling)

— Be prepared for manual cleanup

deo) ” Oregon State
iE 1 IH 2 DB) By Neo & Orgons:
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Mathematlcally defined, Geometric Primitives

* points
. Imes and line segments

To flt or not to

vrl HIWw wwl

. spheres

 cubes or boxes

* toroids

 cylinders

* pyramids
teapot
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Complete with 3 Pipes -
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Elevator Wall l

1st Floor
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d bf d bf d bf d bf d bf

Column 1st floor, by monitor 29.3 228  W10X22 259 14.6 13.1% 56.1%  W12X53 307 254 47%  -10.2%
Column 1st floor, NE corner of elevator 29.8 23.9 W10x45 25.7 20.4 16.2% 17.3%  W12X53  30.7 254 -3.0% -5.9%
Beam 1st floor, by rear entrance 34.8 125  W14x22 348 12.7 0.0% -16%  W14x22 348 127 0.0% -1.6%
Beam 1st floor, by main doors 34.1 199  W10x22 25.9 14.6 31.6% 36.3%  W14X43 348 203 -2.0% 2.1%
Beam 1st floor, cross beam above stairs 21.6 16.8 W10x22 25.9 14.6 -16.6% 15.0% W8Xx28  20.5 16.6 5.5% 1.1%
Beam 1st floor, by hanging sculpture 441 155  Wi14x22 3438 12.7 26.7%  22.0% W18X35 450 152 -1.9% 1.7%
Column 1stfloor, at elevator and stairs 19.4 14.6 W8X24 201 16.5 -3.7% -11.6%  W8X24 2041 16.5 -3.7% -11.6%
Column 1st & 2nd floor, SE corner elevator 21.3 19.5 W8X24 20.1 16.5 5.7% 18.1% W8X40  21.0 20.5 1.6% -4.9%
Beam 2nd floor, north wall 58.7 21.6  W24X76  60.7 22.8 -3.3% -54%  W24X76  60.7 22.8 -3.3% -5.4%
Beam 2nd floor, base atrium balcony 37.8 13.3  W10X22 259 14.6 45.9% -89%  W16X26  39.9 14.6 -5.2% -8.9%
Beam 2nd floor, east side atrium 52.3 16.0  W21X50  52.8 16.6 -1.0% -35%  W21X50 52.8 16.6 -1.0% -3.5%
Column 1st & 2nd floor, north wall 329 356 W14X132 373 37.3 -11.9% 47%  W14X90 356  37.3 -1.5% -4.7%
Minimum -16.6% -11.6% Minimum  -7.5% -11.6%

Maximum  45.9% 56.1% Maximum  5.5% 1.7%

Mean 8.6% 10.8% Mean -21% -4.2%

Std deviation *18.7% %20.7% Std deviation  *3.4% +4.0%

Table by Michael Dennis
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Color

Intensity

Data Structure
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Advantages Limitations

Computationally costly, require
finely-tuned parameters, limited
to small datasets, sensitive to
variable point density and data
gaps common in TLS data.

Generic - Function with any point
cloud, most widely available. Works
well in urban environments where
well defined features are prominent

Color information not always
available in point cloud,
Obtaining high quality images
with scans can sometimes be
time consuming, Color not
sufficient alone to distinguish
multiple objects - some features
can have more than one color,
others can share the same color.

Enables application of Computer
Vision and Image Processing
algorithms, some objects are
readably segmentable by color

Inherent property of laser scan data,
intensity helps distinguish contracts
between surfaces that may not be
distinguished by geometry alone.
Computationally efficient.

Intensity values are affected by a
variety of factors. Requires
radiometric calibration for optimal
results.

Efficient and enables exploitation of
computer vision and image
processing algorithms.

Requires a structure point cloud

Neo

geospatial software

ted Approaches

Example Algorithms
RANSAC (Random Sampling and Consensus)

Hough Transform

Region Growing (based on proximity, slope, curvature, and surface
normal) from a seed location
Detecting Surface Discontinuities
K-Means Clustering
Voxelation
Curvature

Multi-scale morphological analysis

Fuzzy Parameters in relative height differentials
Tensor voting of normal vector clusters
Support Vector Machine classification of the DTM
Spectral filtering
Graph theory segmentation and union (also considers normals)
Mean shift smoothing algorithm to cluster sections of images
followed by PCA for classification.

Superpixel clustering (SLIC) followed by normal vector evaluation
through SVM. A k-nearest neighbor algorithm is utilized for
refinement.

Conditional Random Field to classify buildings, low vegetation, tree,
natural ground, and asphalt.

Full waveform analysis the of the intensity amplitude, the cross-
section per illuminated area, and the backscatter coefficient followed
by a SVM classifier.

Scan line segmentation followed by surface growing process
between adjacent scan lines
Calculations of gradients from the range image followed by region
growing image segmentation
Smoothed surface normal and range panorama analysis
Mean-shift algorithm to segment Intensity, Range, Surface normals,
and True Color Channel panoramas.
Extraction of trees using range, intensity, LUV, and HSV color
panoramas
Use of computer vision algorithms to segment based on HDR color,

normalized intensity, range, and normal components represented as

2D panoramas.

Reference

Fischler and Bolles (1981), Schnabel et al. (2007).
Hough (1962), Ballard and Brown (1982), Vosselman
(1999), Maas and Vosselman (1999), Rabbani (2006)

Ballard and Brown (1982), Rabbani et al. (2007), Pu et al.
(2006), Moussa and El-Sheimy (2010)
Wang and Shan (2009)
Chehata et al. (2008)
Douillard et al. (2011)
Son and Kim (2015)
Bradu and Lague (2012), Rodriguez-Caballero et al.
(2016)
Biosca and Lerma (2008)
Lin and You (2006)
Serna and Marcotegui (2014)
Lichti (2005)
Strom et al. (2010)

Sok and Adams (2010)

Mahmoudabadi et al. (2013)

Niemeyer et al. (2012)

Mallet et al. (2011)

Jiang and Bunke (1994), Hoover et al. (1996), Sithole and
Vosselman (2003), Sithole (2005)

Gorte (2007)
Zeibak and Filin (2009)
Barnea and Filin (2013)

Barnea and Filin (2012)

Mahmoudabadi et al. (2016)

Oregon State
? University
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Semi-Automated\Automated cloud segmentation challenges

- Usually complex, computationally costly

- Require finely-tuned parameters & sensitive to parameters

- Laborious when applied to broader and larger datasets

- Fit the points to mathematical models — not all objects have regular geometric shape
- Many techniques developed for small datasets (few million points)

- Quality Control is still often a manual process

e S, P \ éﬁ‘
AR - m ‘ Oregon State
ﬂ HI/ EM @ D]E @—zzw University
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a [V] © Sphere (r=0.789025)
V] S Sphere

a [V] © Sphere (r=53.431282)
[T 3 Sphere

4 [V] © Sphere (r=0.788771)

http://www.cloudcompare.org/doc/wiki/index.php?title=File:Cc_q RansacSD_resuIt.jpg
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CAD/BIM considerations

« Simple geometric shapes (minimal storage, easy interaction)
« Real world is not simple (deflections)

« Constraints (e.g., horizontal, vertical, or meet at 90 degrees).
 Data interoperability hurdles

 Data coverage can enable very accurate modeling (e.g., plane defined by 1E6
points versus few points by traditional methods)

 Software enables point cloud viewing\modeling in CAD\BIM

P Oregon State
ﬂ HI/. EHM A& University




FIG WORKING WEEK 2017/

BIM FOR SURVEYORS Helsinki Finland Sunday 28 May 2017

Generic modeling considerations

« Tofitor not to fit

 Increased data = increased computation time
 Engineering software may not be able to handle it

* Increased smoothing removes noise, but removes features
 Too much smoothing removes wanted features

*  Orders of magnitude increase in manual processing time for better and better (higher
resolution\reduced artifacts) models

« Suggest iterative approach. Start with a “crude model” , clean it, do
calculations\evaluation, then keep cleaning, repeat calculations and see how much
things change.

o deo ‘ Oregon State
28117 1Y i (DB EEY Neo & o
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*Brodu, N. and Lague, D., 3D Terrestrial LIDAR data classification of complex natural scenes
CanupO using a multi-scale dimensionality criterion : applications in geomorphology, ISPRS journal of
Photogrammmetry and Remote Sensing, 68, p. 121-134, 2012.

Raw 3D Point Cloud Multi-Scale Dimensionality Classification

Vegetation

Rock

* http://www.cloudcompare.org/doc/wiki/index.php?titte=CANUPQ_(plugin)
https://geosciences.univ-rennesl.fr/spip.php?article1284&lang=fr

g Oregon State
Iﬂl < HIY. MHM A’2 - [:.lf,o Y University



http://www.sciencedirect.com/science/article/pii/S0924271612000330

FIG WORKING WEEK 2017/

BIM FOR SURVEYORS Helsinki Finland Sunday 28 May 2017

Mahmoudabadi, H., Olsen, M.J., & Todorovic, S., (2016). “Efficient point cloud segmentation
utilizing computer vision algorithms.” Journal of Photogrammetry and Remote Sensing, 119C,
135-150, doi: 10.1016/j.isprsjprs.2016.05.015

A - m % Oregon State
HHIV EHM ) E]E Q,l—gc”o University 2
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Objectives:

»»Apply image processing and computer vision to segment dense,
large, 3D point clouds

> Implement HDR photography to improve digital images and
consequently segmentation results.

+»*Derive an empirical correction formula to improve segmentation
performance.

Ao )
L Ne
18 118 i (DB) By Neo

% Oregon State
W University
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Colored scan:
laser intensity, x, y, z, RGB
Bitmap extractor i
Laser Normal RGB/Lab
. . Range
intensity vector color
- Laser intensit .
. . 4 HDR processing
¥, \ orrection

. \ia preparation

~3¢

c
. Resize bitmaps
9 L RN (down sampling)
) . Graph-based image
%) . i
:f | segmentation
A \
\ b Union all edges

Project segmented

image on 3D point
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Data improvement 1 - Laser intensity correction

log(— =~

A)L PIMP

B) Lc PIMP

17 LA EXE] Se? T ot 7 UILLLVCLDILY




FIG WORKING WEEK 2017/

BIM FOR SURVEYORS Helsinki Finland Sunday 28 May 2017

Data improvement 1 - Laser intensity correction (B)

3000 T T T T T T 3500 T T T T T T T T
[ concrete | | [ [ concrete|
[ building | T m [ building | |
2500 - cars | ] 3000 - Elcars |
[ Jarass || [grass
] 2500 .
2000 -
2y & 2000F
= c
S 1500 S
8 g
& = 1500
1000
— 1000
500 500
0 r I 0 L [Ty,
0 01 02 03 04 05 06 07 08 09 1 02 025 03 035 04 045 05 055 06 065 07
Raw laser intensity (L) Corrected laser intensity (Lc)

Review of Techniques: Kashani, A., Olsen, M.J., Parrish, C.E., & Wilson, N. (2015). “A review of
lidar radiometric processing: from ad hoc intensity correction to rigorous radiometric
calibration,” Sensors, 15(11), 28099-28128; doi: 10.3390/s151128099

Jdeo ” Oregon State
H HI// EHM AL m%p University
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F I G 1 - Colored scan:

laser intensity, X, y, z, RGB
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Merging Vik =[x, o, ] k=1--K

K = number of input PIMPs K

N = number of segments 5i,j - Zk: Wk["Vik —ij f
W = Weight vector (in this research all 1)

D = sparse matrix of (5,

y = merging threshold max(|| D []) = N(N -1)

2

Sorted

sorted dissimilarity rank



Evaluate data improvement

Basic PIMPs+RGB+Lc Basic PIMPs+HDR+Lc
A)RGBPIMP  B)Basic PIMPs (Nn, Nv, p, )+ RGB  C)Basic PIMPs + HDR D) Basic PIMPs + HDR + Lc

.":w‘c~~
e I Neo’
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R --TLS Point Cloud Data Ground Candidates Ground Point Clusters

ST Region Growth
I Clustering @ Refining |

L

Scanline Density Analysis

Point Cloud in a Scanline

Point Density (pp)

......

ref

i
w

| |
I FAN T
N | Relative Density (RD =:—”) : b
| |
| |

|

Intvi SR, Tt
4 Max SR, i
Vi

|

Reference Density (p,05)

Neighbor Points in Scanning Order

Che, E., & Olsen, M.J., (2017). “Fast Ground Filtering for TLS data via ScanLine Density Analysis,” ISPRS Journal
of Photogrammetry and Remote Sensing, 129, 226-240, http://dx.doi.org/10.1016/].isprsjprs.2017.05.006.

AR ﬁ ” Oregon State
i1 B8 2 (DB) R Neo & oo
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Large-Scale Point Cloud Classificatio

Ahome @datar (Eresuts~ Asubmit~- @FAQ & people login  # signup

Welcome to the Large-Scale Point Cloud Classification Benchmark!

3D point cloud classification is an important task with applications in robotics, augmented reality and urban planning. Recent advances in
Machine Learning and Computer Vision have proven that complex real-world tasks require large training data sets for classifier training. At the
same time, until now there were no data sets for 3D point cloud classification which would be sufficiently rich in both object representations
and number of labelled points. For example, the well-known Oakland data set contains less than 2 million labelled points. Another popular

data set, the NYU benchmark, provides only indoor scenes. Finally, both Sydney Urban Objects data set and the |Qmulus & TerraMobilita
Contest use a 3D Velodyne LIDAR mounted on a car which provides much lower point density than a static scanner. The same counts for the
Vaihingen3D airborne benchmark.

This benchmark closes the gap and provides the largest known labelled 3D point cloud data set of natural scenes with over 3 billion peints in
total. It also covers a range of diverse urban scenes: churches, streets, railroad tracks, squares, villages, soccer fields, castles to name just a
few. The point clouds we provide are scanned statically with state-of-the-art equipment and contain very fine details. Our goal is to help data-
demanding methods like deep neural nets to unleash their full power and to learn richer 3D representations than it was ever possible before.

What do we provide?

We have created a framework for the fair evaluation of semantic classification in 3D space. In this framework we provide:

« A large set of point clouds with over one billion of labelled points.
+ Ground truth, hand-labelled by professional assessors.
« A common evaluation tool providing the established intersection-union measure along with the full confusion matrix.

Change Log

« 11.01.2016: The Point Cloud Classification website is online.

Oregon State
&7 University

\ .
Images: Semantic3d.net
380 I 2 (DB) EESY Neo’  meg
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Classification Accuracy Confusion Matrix

REDICTED
Ground Vehicle Vegetation | Building
ACTUAL
Ground 90% 1% 9% 0%
Vehicle 3% 87% 8% 2%
Vegetation % 12% 75% 3%
Building 0% 0% 6% 95%

dope Oregon State
5 Universi
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nointclouds.org)

About. News Blog Downloads Media Jobs Documentation Contact GSoC'14

Learn more

PCL features

face

reconstruction

Initial point o| fitting

cloud data

Filtering jmentation

What is it?

The Point Cloud Library (PCL) Is  standalone, large scale, open
Project for 20/30 image and point cloud processing.

PCL s released under the terms of the BSD license, and thus free
for commercial and research use. We are financially supported by a
consortium of commercial companies, with our own nion-profit
organization, O e would also fike (o thank

Latest News Articles )
Nawwis digizes Deutsche shipping section, Oct 20, 2014
Deutsches Museum and nt new digitization technology
visitors from around the workd can experience museum's shipping
section in 3D

ECL Tutorial and 3DRP-PCL
PCL Tulorial and 3DRP-PCL .

4. Apr 03, 2014

New Ocular Robotics PCL code sorint. Feb 11. 2014

Active Code Sprints

The iist of undergoing code Sprints s SNowN Delow.

Images from
http://pointclouds.org
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NCHRP

REPORT 748

Mobile LIDAR Qe

Guidelines for Use in Transportation Applications

GUIDELINES FOR THE USE OF MOBILE LIDAR IN TRANSPORTATION

Welcome to the online resource for the NCHRP 15-44 Guidelines for the use of Mobile LIDAR in Transportation Applications. Mobile LIDAR
is one of several new 3D technologies that offer the promise of transforming the way in which transportation agencies plan, design, construct
and maintain their highway networks. This website is designed to facilitate the interactive learning of the guidelines document and serve as a

central hub for discussion and transmission of knowledge amongst the Mobile LIDAR community.

NATIONAL
COOPERATIVE
HIGHWAY
RESEARCH
PROGRAM

Getting Started ELearning Modules

News Feed

Review key overview
references for Mobile
LIDAR. Y

discussion of mobile

~-

Join others in the International LiDAR

Mapping Forum Launches
2014 Program -
GISuser.com (press

— _release) _
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Recommended Reading

Martin Weinmann

AIRBORNE AND TERRESTRIAL
LASER SCANNING

Reconstruction
and Analysis of

3D Scenes

From Irreqularly Distributed 3D Points to
Object Classes

Oregon State
@E University
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The |S|’RS Geospatial Week 2017

Sept 18-22, 2017 Wuhan, China

Che, E.,* and Olsen, M.J., (2017). “Fast Edge Detection and Segmentation of Terrestrial Laser Scans through Normal
Variation Analysis,” ISPRS Geospatial Week, Laser Scanning ‘17, Wuhan, China
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