Motivation:

Repeated precise leveling surveys carried during the past decade point to an instability of the nodal points in the leveling network in the southwest part of Israel.

Goal:

Modeling the regional and the local vertical movement of points.

Operation:

Intensive GPS monitoring campaigns over a period of one year.

Summery of the nine monitoring campaigns

Monitoring Number	Average GPS day	Degrees of freedom	\hat{m}_0^2
1	011-2002	117	1.041
2	067-2002	120	0.932
3	127-2002	120	1.003
4	162-2002	117	1.039
5	211-2002	111	0.940
6	246-2002	108	0.983
7	296-2002	114	1.071
8	345-2002	120	1.014
9	038-2003	135	1.011

The deformation model

Two deformation models were tested to describe the vertical position of a point relative to time:

Linear motion,

$$h = h_0 + \dot{h}\Delta t$$

Swelling and shrinking dynamic model,

$$h = h_0 + \dot{h}\Delta t - \frac{cT}{2\pi}\cos(\frac{2\pi}{T}\Delta t)$$

The accuracy of the network points in a local horizon system in the free net solution

Point	Accuracy (1σ) [m]			
name	average	minimum	maximum	
LHAV	0.0046	0.0036	0.0073	
436A	0.0075	0.0054	0.0103	
362A	0.0069	0.0049	0.0096	
OFKM	0.0067	0.0049	0.0093	
4727	0.0069	0.0048	0.0106	
ASHK	0.0058	0.0045	0.0083	
402U	0.0062	0.0051	0.0088	
040F	0.0074	0.0054	0.0104	
065F	0.0063	0.0043	0.0098	
718A	0.0058	0.0044	0.0089	
EZRA	0.0057	0.0043	0.0091	

The linear motion model:

Reference system	model noise	$\hat{\mathbf{m}}_{0}^{2}$	$F_{(0.05,d,r)}$	k	\mathbf{H}_{0}
All Points	152.0	1.066	1.83	1.40	<u>accepted</u>

There was no linear movements during the measurement campaigns

Two-Steps analysis

First Step:

Epoch by epoch data processing

Second Step:

Deformation analysis

Statistical tests are applied for estimating the correspondence of the motion model

The swelling and shrinking model:

Reference system	model noise	$\hat{\mathbf{m}}_{0}^{2}$	$\mathbf{F}_{(0.05,d,r)}$	k	\mathbf{H}_{0}
All Points	101.4	1.031	1.57	3.15	rejected

Swelling and shrinking movements occurred during the measurement campaigns

