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SUMMARY 
 
Local geodetic datums have been developed in the past, in order to satisfy the surveying and 
mapping requirements of countries all over the earth. The broad use of GPS observations, as 
part of the surveying routine, has shifted the interest form the local to the world geodetic 
systems. The transformation of coordinates between geodetic systems has always been of 
interest, but the new needs have made it more important. Three dimensional similarity 
transformations are being used in Geodesy in order to transform coordinates between three 
dimensional geodetic datums, although the two dimensional approach is often followed, 
especially for small networks. 
 
This paper deals with the congruency of the two approaches as well as with the tolerances 
with respect to the size of networks, solved within the Hellenic Geodetic Reference System 
(HGRS '87). 
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1. INTRODUCTION 
 
A fundamental activity in land surveying is the integration of multiple sets of geodetic data, 
gathered in various ways, into a single consistent data set, that is into a common geodetic 
reference frame. In the past it was sufficient, but in some cases also unavoidable, to combine 
all such data using a locally, mostly arbitrarily, defined geodetic datum. 
 
In recent years, a growing trend toward the use of satellite positioning and global mapping 
satellite systems has been developed providing position – based products in a world reference 
frame. One of the principal purposes of such a world frame is to eliminate the use of multiple 
geodetic datums. But, until such a world geodetic reference frame is accepted, used and 
implemented worldwide, the satellite data may lead to several practical difficulties when the 
results need, also, to be related to a geodetic datum, as is often the case. Such problems arise 
in several instances, such as navigation, revision of older maps, cadastral surveying, 
industrial surveying, deformation studies, geo-exploration etc. 
 
In general, the necessity of transforming data from one reference frame to another is solved 
by applying a coordinate transformation. Although coordinate transformations are 
straightforward mathematically, they may cause several problems when applied, for various 
reasons, such as poor knowledge of the distortions and inconsistencies of the local datum, or 
even lack of sufficient knowledge of geodesy of people who use such transformations. 
 
To properly understand coordinate transformations in geodesy, it is essential to understand 
the relationship between a geodetic reference system, which is mathematically established, 
and its realisation, via geodetic observations, the GRF (Geodetic Reference Frame). 
Naturally, the GRF has some degree of uncertainty, due to observational errors in the 
determination of the coordinates of the ground points. 
Often, there are two GRFs realising two different systems (local or global), with a number of 
common network points. Since the GRFs are not perfect realisations of their systems, only a 
best estimate of the transformation parameters with their respective standard deviations may 
be computed. In practice, this means that no exact transformation exists between two 
geodetic coordinate systems. The degree of inconsistency in a transformation will depend on 
the patterns of errors present in the two GRFs, which often are a result of the geodetic 
methods used to establish the GRF, and also on how carefully the transformation has been 
designed to take into account those errors. 
 
− The choice of the appropriate coordinate transformation model depends on factors such 

as:  
− The size of the area (sub - network) of interest and the distortions of the local datum in 

this area  
− The type of the network (3D or 2D or even 1D) and the accuracy required 
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The present work deals with the estimation of the parameters of the similarity transformation 
model and their application to geodetic networks. Both the three dimensional and the two 
dimensional transformations are discussed and the congruency of the two approaches is 
investigated with respect the size of the network. Special care is given to the case when older 
geodetic coordinates, referring to a geodetic datum, are compared with recent ones, referring 
to a world reference frame, for monitoring deformation. 
 
2. THE MODELS 
 
The transformation of coordinates from one geodetic frame to another is possible with the 
coordinates of points expressed in (φ, λ, h). The formulae are known as the Full Molodensky 
formulae or the Abridged Molodensky ones, the latter having a lower degree of accuracy. 
These formulae deal only with a translation of the origin and changes in ellipsoid size and 
shape, while a difference in orientation of the ellipsoidal axes is not included. 
 
The most general transformation model is the affine transformation, where changes in 
position, size and shape of a network are allowed. The scale factor of such a transformation 
depends on the orientation but not on the position within the net. Hence the lengths of all 
lines in a certain direction are multiplied by the same scalar.  
 
A transformation in which the scale factor is the same in all directions is called a conformal 
or similarity transformation. It preserves shape but not size. An orthogonal transformation is 
a similarity transformation in which the scale factor is unity. In this case the shape and size of 
the network will not change, but the positions of points do. 
 
2.1 3D Transformation Models 
 
Six parameters are needed to describe the relation between two geodetic reference frames, 
three translation parameters and three rotations between the coordinate axes. Thus, strictly 
speaking, no scale distortion should be considered as part of a coordinate transformation, 
since a scale difference represents a systematic distortion of positions (coordinates) rather 
than of the reference frame itself. [Vanicek P., Steeves R.R., 1996] 
Transformation parameters may have universal, national or local character. Thus, universal or 
global model parameters, relating two homogeneous satellite datums, are derived from 
globally distributed network data. National geodetic datum parameters are usually derived by 
national geodetic authorities and typically relate the national geodetic datum to a world 
frame, for example HGRS ′87 (Hellenic Geodetic Reference System ′87) and WGS84. There 
are, also, cases where parameters are determined locally for a limited area (sub-network), 
such as when a recent GPS survey is to be incorporated to a national network, or a GPS 
survey is compared with older geodetic data for monitoring deformations. 
Since, in most cases, only a limited number of common network points are available, the 
similarity transformation is preferred over the other transformation models due to the 
simplicity of the model. 
The similarity transformation is efficient for relating 3-D GPS networks to terrestrial 
networks, although using such a transformation on a large network may distort local scale 
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and orientation, since it will tend to smooth out local distortions. In order to overcome this, it 
may be more appropriate to divide a region into smaller zones, each with their own set of 
transformation parameters. Presumably, the results of the transformation may be unreliable 
outside the area spanned by the common points used to derive the transformation parameters. 
 
When coordinate transformations between geodetic reference frames are applied, small 
values are expected for the rotation and the scale parameters. Thus, assuming rotation 
parameters of the order of a few seconds of arc, the following form of the 3D similarity 
transformation is often used, known as the Bursa-Wolf model [King R.W. et als, 1985]: 

 
 
 
 
 
 
 
 
 
 
The transformation includes three translation components, tX, tY, tZ, three small rotations εx, 
εy, εz and a scale component k, which is the deviation of the scale from unity (1+k) and is 
small enough to be expressed in ppm. 
 
This model is used when global or national geodetic datum transformation parameters are to 
be estimated. In the case of networks over limited areas the rotation parameters are highly 
correlated with the translation ones, due to the large distances between the implied origin of 
the geodetic datum and the positions of the network points on the earth’s surface. Thus, the 
very small rotations around the coordinate axes are almost indistinguishable from additional 
translations, resulting in translation components significantly different from the "national" 
ones, representative for the whole geodetic datum. 
 
In order to overcome this problem an alternative of the above formula is used, relating the 
transformation parameters to the center of mass of the network – or any convenient point  
(Xo, Yo, Zo) within the network - and the model becomes: 
 
 
 
 
 
 
 
 
Since the rotational and scale parameters depend on the relative positions (baseline vectors) 
the small rotations and the scale component are the same for both (2.1) and (2.2), but the 
translation parameters are not. 
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The minimum number of common points, in order to solve for the seven transformation 
parameters, is three, although, more points are often available and a least squares solution is 
applied. The significance of the estimated transformation parameters should be evaluated.  
 
2.2 2D Transformation Model 
 
In cases of relatively small networks, (less than 100kmΗ100km), another approach is often 
used. The initial 3D Cartesian coordinates are converted to geodetic ones and, finally, to map 
projection coordinates. Then, the full 2D similarity transformation, with two translation 
parameters ∆xo, ∆yο, one rotation θ and a scale parameter K = (1+k), known as Helmert 
transformation, may be expressed as [Hofmann-Wellenhof B. et als, 2001]: 
 
 
 
 
 
According to a slightly different approach the 3D translation parameters (∆Xo, ∆Yo, ∆Zo) 
between the two sets of coordinates are computed and applied. Both sets of coordinates are 
projected to a common reference ellipsoid and then converted to projection coordinates. 
Finally, the parameters of a full 2D similarity transformation, including translation 
components, are estimated. Since the projection of the center of mass of the set of network 
points in the 3D space does not coincide with the center of mass of the projections of the 
same points, additional translation components in the 2D space should be estimated.  
 
The following linear expression for the Helmert transformation is often used: 
 
 
 
where a = Kcos θ and b = K sinθ.  
Then the scale parameter and the rotation are, respectively: K = (a2+b2)1/2 and θ = atan(b/a). 
 
3. PROCEDURE 
 
In the present work, two average size networks (about 100kmΗ100km) were considered. The 
first one was part of a GPS network established in the Corinthian gulf for monitoring the 
tectonic behaviour [Briole P., et als, 2000], while the second one was a sub-network of a 
similar GPS network in the area of Euboea [Veis G., et als, 1999]. Also, a case was 
considered where the points of both networks were taken into account (250kmΗ150km). 
Finally, the case of a small network (10kmΗ10km) in the vicinity of the Corinthian gulf was 
examined. For all network points two sets of coordinates were available; one HGRS '87 set 
and one set expressed in ITRF 2000. The transformation parameters for transforming from 
HGRS '87 to ITRF 2000 were sought after in all cases. 
 
The GPS observations for the Corinthian gulf network were carried out in epoch 1995.8 and 
the ones for the Euboea network in 1997.7. On the other hand, the ground observations used 
for the computation of the HGRS '87 coordinates took place around 1970. Thus, for both 
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areas with active tectonic behaviour, there was an interval of about 30 years between the two 
sets of coordinates.  
 
It should be mentioned that, when GPS data are compared with older geodetic data for 
monitoring deformations, the two sets of coordinates show significant discrepancies and it is 
rather difficult to distinguish which part is due to the non coincidence of the reference frames 
and which is due to real displacements.  
 
In order to avoid this problem and to test the software developed, a simulation was carried 
out, initially, considering two sets of coordinates. The first one was the ITRF 2000 set from 
the Corinthian gulf, while the second one was formed from the first one after applying a 
specific 3D similarity transformation and random noise. Thus, the second set was very close 
to an HGRS '87 set, but without the inconsistencies of a real data set, as mentioned above 
(Table 1, col. 1). 
 
In the case of the 3D similarity transformation both formulae, (2.1) and (2.2), were 
considered. The sub matrices Ai of the design matrix A of the least squares observation 
equations for the estimation of the transformation parameters vector                                  
 
      are of the form:  
 
 
 
 
 
 
for formula (2.1) and of the form: 
 
 
 
 
 
 
for the case of (2.2), while the right hand vector for both cases is of the form: 
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coefficients of the normal equations matrix are of the same order of magnitude. Also, in this 
case, although the translation parameters do not vary from the ones in the rigorous solution, 
the scale and the rotation components become very small, without the need for further 
iterations.  
 
The steps followed are depicted in Figure 1 (case 1), while the results of this approach for all 
cases examined are presented in Table 1. 
 
In this case of the 2D approach the linear model described in (2.4) was considered, after the 
conversion of the initial data sets to the common reference ellipsoid of GRS 80, and then to 
projection coordinates. The approach of estimating first the translation parameters in the 3D 
space and then solving for the full 2D transformation model was also considered, in some 
cases. The steps of the standard procedure are depicted in Figure 1 (case 2), while the results 
of both procedures are, also, presented in Table 1. 
 
In all cases, and for both the 3D and 2D approach, the computed best estimates of the 
transformation parameters were applied to the initial HGRS '87 coordinate sets and the results 
were compared with the ITRF 2000 sets, in order to derive the discrepancies between the 
pairs of coordinate sets (Table 2).  
In the case of the three dimensional transformation not only the (δX, δΥ,δΖ) discrepancies 
were computed (Table 2, case 1), but the resultant transformed HGRS '87 files were 
converted to the projection (Figure 1, case 3) and compared with the respective two 
dimensional ITRF 2000 ones (Table 2, case 3). 
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Figure 1 Flow chart of the approaches followed for both the 3D and 2D transformation models 
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Table 1  Transformation parameters for both 3D and 2D models with respective r.m.s. 
 
In the case of the two dimensional transformation the transformed projection coordinates of 
HGRS '87 were compared with the also projected ITRF 2000 ones (Table 1, case 2). When a 
three dimensional translation was first estimated and then the full 2D model was evaluated, 
the comparison was made between the two dimensional coordinate sets (Table 2). 
 
Finally, discrepancies were computed between the 2D transformed HGRS '87 sets, after the 
application of a 2D transformation, and the same HGRS '87 sets after a 3D transformation 
and consequent conversion to projection coordinates (Figure 1, case 4), ( Table 2, case 4). 
 
4. DISCUSSION - CONCLUSIONS 
 
In the case of the simulated network (Table 2, col. 1), all discrepances computed in three and 
two dimensions were less than 2-3cm, of the same order as the least squares residuals in the 
estimation of the transformation parameters. This good agreement is achieved as the 
discrepancies between the pairs of coordinate sets are only due to random errors. 
 

Networks  
Parameters 

Simulated Corinth Euboea Large  Small  

∆Χο±σX(m) -201.440±.003 -201.444±.208 -
199.959±.054 

-200.609 ±.161 -200.744±.276 

∆Υο±σY(m) 74.270±.003 74.260 ±.208  74.842 ±.054  74.587 ± .161 74.520± .276 

∆Ζο±σZ(m) 245.418±.003 245.413±.208 246.214±.054  245.863±.161 245.544± .276 

k± σk(ppm) 0.0±0.0 0.0±0.03 0.0±0.0 0.0±0.02 0.0±0.02 

εx ± σεx(″) 0.0±0.02 0.94±1.2 0.59±0.13 0.61±0.40 2.18± 7.6 

εy± σεy(″) 0.0±0.01 0.39±0.49 0.26±0.05 0.26±0.17 0.89 ± 3.11 

3D
 S

ol
ut

io
ns

 

εz± σεz(″) 0.0±0.02 0.80±1.02 0.51±0.11 0.52±0.34 
 

1.84 ± 6.45 

∆xο±σX(m) 148.729±.940 120.185±15.869 132.694±3.152 131.992±3.456 89.273± 2.432 

∆yo σY(m) 309.340±.940 292.535±15.869 303.605±3.152 309.750±3.456 322.510± 2.432 

k± σk(ppm) 5.0±0.22 0.51±3.7 3.4±0.74 4.8±0.81 7.1±2.9 

2D
 S

ol
ut

io
ns

 

ω± σω(″) -0.17±0.05 -1.48±0.77 -0.91±0.15 -0.97±0.17 3.10±.61 
 

∆xο±σX(m)   -17.853±3.162  -60.127±14.294 

∆yo σY(m)   -6.348±3.162  18.590±14.294  

k± σk(ppm)   1.9±1.05  4.3±3.4 

2D
 s

ol
ut

io
ns

 a
ft

er
 

3D
 t

ra
ns

la
ti

on
 

ω± σω(″)   4.0±1.05  -14.5±3.4 
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In all other cases and irrespectively of the method used for the estimation of the 
transformation parameters, the size of the discrepancies between the pairs of coordinate sets, 
as well as of the respective residuals, is significant (of the order of several tenths of 
centimetres), due to the presence of a displacement field both in the Corinthian gulf and the 
vicinity of Euboea (Table 2, col. 2-4).  
 

Range of discrepancies in cm 
Types of solutions Simulated 

Network Corinth Euboea 
Large 

Network 
Small 

Network 
3D solution in two steps 

(case 1) 1-2.5 3-115 1-33 3.5-170 1-155 

2D solution 
(case 2) 

1-2.5 1-34 1-21 1-65 0-6.5 

3D solution projected to 2D  
(case 3) 

1-2 5-48 2-27 2-60 1-19 

Comparison 3D – 2D 
solution 
 (case 4) 

1-2  2.5-29 1-28 1-40 1-13 

2D solution after 3D 
translation 

 
  1-21  1-8 

 
Table 2  Range of discrepancies in cm, between the transformed HGRS 87 files and the ITRF 2000 
ones, for all networks and all types of transformation models. 
 
It should be mentioned that, in the case of the small network (Table 2, col. 5), the 
discrepancies computed from a 3D solution are quite large on the contrary to the ones derived 
from the two dimensional models. This is in good agreement with the accepted concept that 
two dimensional transformation models are more appropriate for small networks.  
 
The above mentioned comparisons indicate that, if local transformation parameters between 
two geodetic frames are to be estimated, it may be irrelevant whether the 3D or the 2D 
approach is preferred, even for a relatively large network.  
 
In the case of a 3D transformation it is recommended that the procedure in two steps should 
be preferred, since the least squares solution becomes more stable and, due to the small 
values of the rotation and scale parameters, no iterations appear to be necessary. 
 
Another also acceptable approach is to solve for the translation parameters in three 
dimensions, and then for the full two dimensional model. Obviously, the 2D approach for 
estimating the transformation parameters is the appropriate choice in the case of small 
networks.  
 
However, when deformation processes take place in an area, the long term behavior is, often, 
investigated with geodetic methods, by comparing older and recently acquired data, such as 
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GPS observations. During the analysis, pairs of two dimensional coordinate sets are, usually, 
compared in the projection plane and the displacements for the time interval between the two 
epochs are derived. Such coordinate sets refer, probably, to different reference frames; the 
older ones to a geodetic datum, such as the HGRS '87 and the recent ones to a world one, 
such as the WGS 84 or an ITRFxx. Therefore, an estimation of local transformation 
parameters should take place before the deformation analysis. 
 
Since, usually, the two sets of coordinates refer to different epochs, the size of the residuals in 
the least squares solution for the transformation parameters, whether the 2D or the 3D 
approach is preferred, depends largely on the time interval elapsed and the size of the 
displacement field expected. Consequently, the question of choosing the appropriate 
procedure in the case of deformation analyses is not easily answered.  
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