

# **Deformation Analysis of Tripods under Static and Dynamic Loads**



## Andreas EICHHORN, Germany Johannes FABIANKOWITSCH and Daniel NINDL, Austria

FIG Working Week, Eilat 3-8 May, 2009



### **Contents**



- 1. Motivation
- 2. Theoretical simulations
- 3. Static tripod deformations
- 4. Quasi-static tripod deformations
- 5. Dynamic tripod deformations
- 6. Conclusions and outlook

TS 8C, Eichhorn et al., Deformation Analysis of Tripods

2



### 1. Motivation



- <u>Short term</u> precise monitoring tasks (no pillars / consoles available) => flexible use of tripods
- Temporal stability of tripods is essential precondition for accurate results
   Minimization of random and systematic errors by tripod head movements
- Tripod stability = height stability ( $\Delta z$ ) and horizontal stability ( $\Delta x$ ,  $\Delta y$ )
- · 'Stability' must be referred to the length of the measurement process
- External loads (e.g. sun, wind, soil instability and vibrations)
- System tripod  $\Leftrightarrow$  tacheometer also affected by tacheometer itself
  - robot tacheometers: typical mass 5 8 kg and rot. speed up to 128 gon/s
  - static and dynamic loads by mass, accelerations resp. decelerations
  - => elastic or plastic tripod deformations

TS 8C, Eichhorn et al., Deformation Analysis of Tripods

### 1. Motivation



- · Increasing number of tripod types available on the market
- Introduction of new materials in tripod manufacturing (e.g. fibreglass: Nanjing Survey / Crain Inc.)
- Cooperation between TU Vienna and Leica Geosystems for investigation of standard tripods (diploma thesis)
- · Investigations realised at Leica labs / Heerbrugg
- · Focus on
  - interaction tacheometer load ⇔ tripod (no external disturbances): lab
  - at first: inner height stability and quasi-static drift reactions
  - later: also dynamic effects (like horizontal torsional rigidity)

TS 8C, Eichhorn et al., Deformation Analysis of Tripods

4





### 2. Theoretical simulations



- · First step: theoretical simulations for expected deformation range
- Simple Finite Element model (FEM) of tripod
  - each tripod leg is system of three homogenous and isotropic beams
  - rigid connection (neglection of clamps)
  - legs connected in single knot (tripod head)
  - supported by non-elastic ground
- Restricted to static vertical loads (=> height stability)
- For simulation: geometrical parameters derived from Leica GST120-9 (H)
- · Young's modulus from dry hardwood
- 'Loaded' with typical test mass  $m = 30 \text{ kg} (F \approx 300 \text{ N})$

TS 8C, Eichhorn et al., Deformation Analysis of Tripods

e



# 2. Theoretical simulations • Static reaction of tripod head: $\Delta z = 0.02 \text{ mm}$ • Model verified by following measurements $(\Delta z_{\text{meas}} \approx 0.02 - 0.03 \text{ mm})$ • FE-model enables calculation of failure ( $\approx 240 \text{ kg}$ )

### 3. Static tripod deformations



- · Investigation of height stability under static loading
- · Required accuracy for monitoring system derived from FEM results
- · Monitoring system:
  - combination of precise levelling instrument (Leica DNA03) and short levelling rod (Leica GWLC60)
  - inner accuracy for repetition measurements (small cutout):  $s_{\Delta h}$  < 0.01 mm
  - automated registration of measurements
  - measuring frequency restricted to f = 0.25 Hz (compensator influence)
- Experimental setup under controlled environmental (lab-) conditions
- Tripod legs fully extended, spaced (1 m), clamps tightened with torque spanner
- Controlled loading with Leica test masses (*m* = 30 kg for H and 10 kg for L)

TS 8C, Eichhorn et al., Deformation Analysis of Tripods

8









### 3. Static tripod deformations



### Results for vertical static loads

### Height stability (H = heavy / L = light tripod)

| Tripod             | Company        | Material     | Test load<br>[kg] | Vert. def. 4z<br>[0.01 mm] | Boundary<br>ISO12858<br>[0.05 mm] | Hysteresis<br>[0.01 mm] |
|--------------------|----------------|--------------|-------------------|----------------------------|-----------------------------------|-------------------------|
| GST120-9 (H)       | Leica          | Wood (beech) | 30                | 3                          | OK                                | 1.5                     |
| S40 (H)            | Nanjing Survey | Fibreglass   | 30                | 4                          | OK                                | -2                      |
| Trimax (H)         | Crain Inc.     | Fibreglass   | 30                | 5                          | OK                                | 3                       |
| CTP101 (H/L) Leica |                | Wood         | 30                | 3                          | OK                                | 1                       |
| GST05 (L)          | Leica          | Wood (pine)  | 10                | 1.5                        | OK                                | 0                       |
| GST05L (L)         | Leica          | Aluminum     | 10                | 3                          | OK                                | 1                       |
| CTP103 (L)         | Leica          | Aluminum     | 10                | 2                          | OK                                | 0.5                     |

TS 8C, Eichhorn et al., Deformation Analysis of Tripods

11

### 4. Quasi-static tripod deformations



- Investigation of quasi-static drift behaviour => slow long-term effect
- · Horizontal torsion of tripod more critical than vertical movement
  - time-dependent error in tacheometer orientation
  - systematic error in measured horizontal directions
- One main reason (indoor): continous stress decomposition in tripod
- · Requires another kind of monitoring system:
  - Leica autocollimator and autocollimation mirror (accuracy  $\sigma_{\!\scriptscriptstyle\Theta}\!<\!2^{\rm cc}\!)$
  - automated registration of measurements (integrated PSD)
  - measuring frequency f = 16 Hz
- Experimental setup under controlled environmental (lab-) conditions
- Static tripod loading with tacheometer Leica TCA2003 ( $m \approx 8 \text{ kg}$ )

TS 8C, Eichhorn et al., Deformation Analysis of Tripods

12









### 4. Quasi-static tripod deformations



### Results for quasi-static deformations

( TCA2003  $\sigma_r = 1.5^{\circ\circ}$  )

### Horizontal drift investigation

| Tripod       | Company        | Material     | Total drift<br>[cc] | Drift after<br>15min [cc] | Boundary<br>[8 <sup>cc</sup> ] |
|--------------|----------------|--------------|---------------------|---------------------------|--------------------------------|
| GST120-9 (H) | Leica          | Wood (beech) | 6.5                 | 1.5                       | ок                             |
| S40 (H)      | Nanjing Survey | Fibreglass   | 22.5                | 7                         | NO                             |
| Trimax (H)   | Crain Inc.     | Fibreglass   | 9                   | 8                         | NO                             |
| CTP101 (H/L) | Leica          | Wood         | 4                   | 1.5                       | OK                             |
| GST05 (L)    | Leica          | Wood (pine)  | 3                   | 0.5                       | OK                             |
| GST05L (L)   | Leica          | Aluminum     | 23                  | 15                        | NO                             |
| CTP103 (L)   | Leica          | Aluminum     | 9.5                 | 2                         | NO                             |

TS 8C, Eichhorn et al., Deformation Analysis of Tripods

15

### 5. Dynamic tripod deformations



- Tacheometer rotation (esp. accelerations and decelerations) also induces torsional moments to tripod => up to  $M_{\rm T}$  = 60 Ncm
- New task: investigation of <u>horizontal torsional rigidity</u> (resistance of tripod against torsional moments)
- Short-term effects with high frequencies (more than 50 Hz)
- · Autocollimator (16 Hz) not suitable for investigation
- · Development of a monitoring system at TU Vienna
- Just an outlook to first results
- · Monitoring system consists of combination highspeed PSD and miniature laser
  - measuring frequency up to 30 kHz
  - relative position accuracy laser spot on PSD  $s_{AY}$  =  $s_{AX}$  = 5  $\mu m$

TS 8C, Eichhorn et al., Deformation Analysis of Tripods

16









### 6. Conclusions and outlook



- Inner height stability is no real problem for short-term monitoring tasks
- Small amplitudes and hysteresis effects / wood best & fibreglass worst behaviour
- · Quasi-static drift is much more critical
- Aluminum and fibreglass: drift influence cannot be neglected (in relation to specified tacheometer accuracy) / wood shows acceptable amplitudes
- · Recommendation: tripod relaxation of min. 1-2 hours after tacheometer mounting
- <u>Dynamic torsional moments</u> may induce tripod torsions up to 3 mgon (and more)
- Only short phases, mainly in acc. and dec. phases / face changes ...
- May have significant influence esp. on kinematic measurements
- New PSD-laser-system: further investigation of dynamic tripod deformations (e.g. influence of unbalanced tacheometer masses) => diploma thesis

TS 8C, Eichhorn et al., Deformation Analysis of Tripods

19





# Thank you very much for your attention!

Special thanks to Leica

for equipment, lab facilities and local advice

TS 8C, Eichhorn et al., Deformation Analysis of Tripods

20