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. “Fast” modeling (real-time and/or post-processing)

Allow “Editing” (manual and/or automatic)
Give the option of “Intelligent” filtering (reduction) of data
“Accurate” volume computation => “accountability”

~=> GRID and TIN (triangular irregular network) modeling
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2. Grid modeling: Principle

* Multibeam =>
* Equidistant coordinates in
international grid system
« UTM

» Conventional reference plane (or GRS80 ellipsoid)

* Output = equidistant grid data =>

* Store only Depth values (typically 2 byte/point:
65536 depth values)

* Grid interval distance is decisive parameter




2. Grid modeling: Filtering: Why ?

* Huge amount of points (e.g. Kongsberg EM3002)
* 40 Hz
* 500 pts./swap
20.000 pts./sec. or 72 million pts./hour

+ interpolation by multibeam system software to equidistant
grid

=> More or Less points depending on grid interval distance

2. Grid modeling: Filtering: How ?

* Modify grid interval distance
e.g. lbylm=5byS5Sm
Reduction by 96 %

Loss of resolution can cause loss of seabottom details
Q

N\
* Use of “smarter” algorithms

* Depth is weighted average of all depths of initial cells
* Weighting factor = inverse distance to power n (2 ?)

* Minimum depth (control survey, not for volume computat.)

 Use model with variable grid intervals => complex
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3. TIN based modeling: principle

What is a triangulation ?

Why Delaunay is the best triangulation ?

Property of a Delaunay triangulation

Different Algorithms
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“J) What is 3 triangulation (TIN) ?

= network of irregular triangles, created by connecting the
points (vertices) of a dataset so that

- no triangle sides are intersecting
- no triangles are superposed
- the union of all triangles fill up the hull of the triangulation

vertex
edge
convex hull

face
outer region

Gert Brouns

Mathematically well defined
Unique for a given dataset
Data-sequence independent
Independent control possible
Variable density

Delaunay triangulation
Drawbacks:

Complexity by storing points (E,N,H) and triangles (<> grid)

Gert Brouns




Property of Delaunay triangulation

For each triangle, the

=

circumscribing circle does not

(=

contain any other vertex.

Gert Brouns

For each triangle, the
circumscribing circle does not
contain any other vertex.

Gert Brouns
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Delaunay triangulaties

\\
For each triangle, the

circumscribing circle does not
contain any other vertex.

Gert Brouns

Gert Brouns




‘A Circumscribing rule is equivalent tot the Min-max rule of Lawson

Local optimisation leads to global optimalisation

el aunay triangulaties Gert Brouns

Delaunay-triangulation-algorithms

2 Incremental
2 Divide-and-conquer

2 Sweepline

‘g 2 Giftwrapping
i%

’él
‘ Pelauna ay tri 1'111411'1tles Gert Brouns
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32 bit Divide and

Conquer
— 32 bit Incremental

— — —-16 bit incremental
(DOS)

100 IUUU IUUUU

# points (x 1000)

Gert Brouns

3. TIN based modeling: Filtering

« Greedy insertion »
# Start situation = convex hull of triangulation
# Selective adding by using a rule (Min. Diff. in Depth or Vol.)

« Vertex decimation »
@ Start situation = complete Delaunay triangulation
« Then selective elimination of points
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4. Grid modeling: Advantages

Grid model is more easy to implement (than TIN)

Higher processing speed
~ => Higher visualisation speed
Algorithms can be raster based instead of vector based
Real-time modeling
Real-time editing

Higher software developing speed => lower cost

11



4. Grid modeling: Drawbacks

Accuracy ?
* Loss of the initial measured points

* Choice of grid interval distance is of capital importance
®\ Too small => huge amounts of redundant data
Too big = => loss of details

* Variable grid interval model could solve
this, but at the cost of complexity, computer
memory and processing time !

4. TIN based modeling: Advantages and drawbacks

* Original measured points are kept
* No interpolated points
» Adaptive model
* Locally higher point density => smaller triangles => more details
. \ * Locally lower point density => big triangles => saving computer memory
* More complex model
* Higher computer memory requirements

* Slower in processing

* Algorithms difficult to implement

12
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5. Accuracy Aspects of TIN models

How to compute a volume in a TIN ?

Standard deviation (o) of the computed volume

Mathematical « best » and « worst » ¢ case

Border Effects

Example
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How to compute a volume in a TIN ?

[With 4; as the planimetric surface of a triangle , foras the height of the horizontal reference
plane and f; as the elevation of the 3 verticesi of the triangle, the volume ¥; generated by one

triangle j is equal to

GUt it D)4, =Y,

f2

Ji

14



How to compute a volume in a TIN ?

Thc total volume 7 is the sum of the volumes of all individual prisms, thus

1
3 Z fi (ZAj )_ Jror At =V

i fiEA;

If we call B;the sum of the surfaces of all triangles with point 7 as vertex or

B, = (ZAj )

FEA;

Then we can write|

T

1

3D FiBi— Froheor =V
i=1

5. Accuracy Aspects of TIN models

How to compute a volume in a TIN ?

Standard deviation (o) of the computed volume

Mathematical « best » and « worst » 6 case

Border Effects

Example
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s  Assuming that all f;are independent, the variance of the volume can be found

0% 1 < !
g; fLBL 7f'refAtot =V - Var(V) :§ Z Var(f;)Bf

' The standard deviation and variance Var(f;) of the elevation of a point is usually assumed to
be constant so that, with n the total number of points

i

Var(V) = VWT(]F) >B;

i

i=1

| This form is useful in the case of a TIN model based on non-equidistant points.

1 o B
o(V)_&.cr(f).Am. 1+[ = J

The latter form is applicable to TIN's of irregular spaced points but is also particularly suited
in the case of a TIN model based on equidistant points.

TIN with regular spaced points

G(V)=%.G(f)“dm. 1+Lcé3)}

Assuming a TIN of regular spaced points, and without the consideration of border issues, a
minimum of the standard deviation can be found for a layout where all rectangular cells of the
TIN have an identical direction of the diagonal. In this case, every non-border point has 6
neighboring triangles and as all triangles have the same surface, g(B) = 0, and it can be found
that

o(V) = %ﬂ(f)-ﬁm

16
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TIN with regular spaced points

In case the diagonals in the grid system are alternating,
half the number of non-border points have 4 neighbors
and the other half 8.

1 o B
O-(V)_\/E'o-(fl‘dm" 1+[ E J

Hence

and|

o) =$ .cr(fJ.A.m-@

The difference in standard deviation of the volume between the optimal layout and the worse

\/1_0 or5.49

case layoutis only a factorT % difference.
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Mathematical « best » and « worst » o case
a(V):in.g(f).A,o,_ 1+

>/ n [ T

The mathematical “minimal variance” solution is obtained when all » surfaces B; are equal,

mei.u (V) = W‘r—(f) Arir
I M

0u=2L4,

o

The mathematical theoretical “maximal variance™ solution for the volume is when one surface
A; is maximal (4j=A;,;) and all other 4; are neglectable and therefore set equal to zero. In this
case there are 3 non-zero B, =4, =4, and

ol ?
2B =34,

Vm‘(f ) '3‘&;;
9
O-ma.x (V) = w 'Alar

NG

Var,, (V)=

5. Accuracy Aspects of TIN models

How to compute a volume in a TIN ?

Standard deviation (o) of the computed volume

Mathematical « best » and « worst » 6 case

Border Effects

pu—p—

—

S

Example

£ S

R SN
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Border Effects R )

Border effects

Assume a geometric layout with 6 neighbors and a total of n
points, m (out of the ) points are border points, meaning that
they are laying along the edges of the triangulated zone, within
the area where the volume is computed, and where the ration m/n
is called @, with 0 <= ¢ <= 1.

1+O-EBT = 1+9(0(1—¢73 ::\/1+E=:1+9
GG

As 0 <= ¢ <= 1, the maximal border effect on the standard deviation of the volume is an
augmentation of the standard deviation with 1/8 or 12.5 %.

Finally

Usually ¢ is close to 0 and the border effect on the standard deviation on the volume is
neglectable.

]

5. Accuracy Aspects of TIN models
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Example

3

Figure 3: Elevation (contour) model of the exemplary points

The following small data set with 5 irregular spaced points given in (E, N. H) is considered;

= o wno|lm
Moo o2
o C 0 ool

Table 1: coordinates of the example

A standard deviation of 0.5 for each of the height values is given.

Example: volume

The volume between a zero-level reference and this surface is easily computed as: 1/3 *
planimetric surface * prism height. In this example. where the prism height is equal to 6, the
prism volume = 1/3 * 5 * 5 * ¢|=50.

1 2

20



4 3

’ Figure 3: Elevation (contour) model of the exemplary points

The variance of the volume is Var(V) = EZVar(fi)Biz. Var(fy) is computed as the square of
the standard deviation of the heights or 0.5*=0.25. The five different B; for point 1,2,..., 5 are

B =0.5%5%1+0.5%5%3 =10
B2 =0.5%5*3+0.5%5%4 =175
B3 = 0.5%5%44+0.5%5%2 =15
By =0.5%¥5%2+0.5%5%] =75
Bs = 0.5%5%1+0.5%5%3+0.5*5%4+0.5%5%2 =25

As a check, the sum of the B; is always 3 times the total surface (75 =25%3).

The sum of the Bi2 i5 100+306.25 +225 +56.25 +625 = 1312.5.

Hence the Var(V)is 0.25 * 1312.5 /9 =36.458.

The standard deviation for the volume of 50 is the root 0f 36.458 or approx. 6.038.
Thus, the volume between the zero-level and the prism surface is 50 +/- 6.038.

Example:

alternatives

4 3

Figure 3: Elevation {(contour) model of the exemplary points

If point 5 had been the central point with coordinates (2.5, 2.5, 6), the volume would have
been the same. B, B2, B; and B4 would be all equal to 0.5*5%2.5+0.5%5%2.5=12.5, Bs being
equal to 25. Var(V) is then 0.25 * (4¥12.52+25%) / 9 = 34.722 and the standard deviation is
now slightly reduced to 5.893 (instead of 6.03 S)L

The theoretical “lower limit case” would yield Gmin(V) = sqrt(0.25%25% /5) = 5.590.
The theoretical “upper limit case” would yield omax(V) = sqrt(0.25%25% /3) = 7.217.

However, these two latter cases are purely hypothetical cases, both layouts being
geometrically impossible.

AW S
. Conclusion: o spread (< 10%) is small: “Best case” 1

e . ol c oV =—

is good approximation and easy to compute ! Jn

a(f).4,

21
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6. Conclusions
* Hydrographic impose specific requirements to the processing
* Multibeam or homogeneous data coverage => Grid modeling
* Straightforward (easy implementation) => faster

* Less flexible (fixed grid interval distance)

of= o Singlebeam or non-homogeneous data coverage => TIN
Ji N\

*More complex (more difficult implementation) => slower

* Flexible (variable triangle size)

* Accuracy of TIN Volume

1
X ) oV)=—4 'GU)'AM
*Fast ¢ approximation Vn

*Accurate 6 computation o-(V):%.cr(f).Am. 1+[

*Border effects are neglectable

22



Next meeting point:

Organised by the Hydrographic Society Benelux

www.hydrol2.com
www.hydrographicsocietybenelux.eu

13-15 Hovember 2012 Rotterdam | Taking care of the sea
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